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Résumé :

L’interaction entre le véhicule et la voie joue un rôle capital dans la dynamique des véhicules

ferroviaires, ainsi que dans l’analyse vibratoire des véhicules et de la voie elle-même. Le contact

roue-rail est fortement influencé par la flexibilité de la voie. Si cette flexibilité est généralement

intégrée dans les simulations dynamiques actuelles, il n’en va pas de même pour celle du sol,

souvent considéré comme rigide. Cette simplification s’explique principalement par la complexité

et la charge de calcul élevée des modèles de sol par rapport à ceux des véhicules et de la voie.

Ce travail propose une solution élégante et innovante : un modèle condensé du sol, limité à la

zone ferroviaire. Ce modèle repose sur une série de masses ponctuelles interconnectées par des

ressorts et des amortisseurs, jouant ainsi le rôle de fondation. Ce modèle de fondation, baptisé

CLM (pour Coupled Lumped Mass), s’inspire du modèle analogue de Lysmer. La configuration

masses-ressorts-amortisseurs introduite ici présente cinq paramètres indépendants de la fré-

quence, permettant de modéliser l’interaction entre les fondations et la surface de contact entre

la voie et le sol. Ce couplage voie-sol s’exprime généralement dans une gamme de fréquences

inférieure à 100 Hz. Des expressions analytiques ont été établies pour calibrer ce modèle dans

le cas de sols homogènes ou stratifiés en couches horizontales. Initialement réalisée manuelle-

ment, cette calibration s’appuie désormais sur une technique de réseaux de neurones, qui établit

des relations analytiques directes entre les propriétés élastiques du sol (module de Young, co-

efficient de Poisson, masse volumique, amortissement structurel) et les paramètres du modèle

CLM (masse, raideurs, coefficients d’amortissement). Des exemples numériques illustrent l’ap-

plication du modèle, en mettant en évidence l’influence de la rigidité et de l’amortissement du

sol. L’analyse vibratoire d’une voie sur différentes fondations révèle que le modèle CLM repro-

duit avec précision l’interaction dynamique entre la voie et le sol. Ce modèle s’avère donc fiable

pour des simulations dynamiques complètes intégrant le véhicule, la voie et la fondation.
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Abstract :

The interaction between the vehicle and the track plays a crucial role in the dynamics of rail-

way vehicles, as well as in the vibration analysis of vehicle and track. The wheel-rail contact

is strongly influenced by the flexibility of the track. While this flexibility is commonly included

in current dynamic simulations, the same cannot be said for the soil, which is often assumed

to be rigid. This simplification is primarily due to the complexity and high computational cost

of soil models compared to vehicle-track models. This study proposes an elegant and innovative

solution : a condensed soil model focused exclusively on the railway area. This model is based on

a series of lumped masses interconnected by spring and dashpot elements, effectively represen-

ting the foundation. This foundation model, named CLM (Coupled Lumped Mass), is inspired

by the Lysmer analogue model. The proposed mass–spring–damper configuration features five

frequency–independent parameters, enabling the modelling of interactions between the founda-

tion and the contact surface between the track and the soil. This track-soil coupling generally

occurs within a frequency range below 100 Hz. Analytical expressions have been derived to tune

this model for homogeneous or horizontally stratified soils. Initially performed manually, this

updating is now assisted by an artificial neural networks technique, which establishes direct

analytical relationships between the soil’s elastic properties (Young’s modulus, Poisson’s ratio,

density, structural damping) and the parameters of the CLM model (mass, stiffness, damping

coefficients). Numerical examples illustrate the application of the model, highlighting the in-

fluence of soil rigidity and damping. The vibration analysis of a track on different foundation

models demonstrates that the CLM model accurately reproduces the dynamic interaction bet-

ween the track and the soil. This model thus proves to be reliable for comprehensive dynamic

simulations that integrate the vehicle, track and foundation.

Mots clefs : ferroviaire, méthode des éléments finis, modèle CLM, réseaux
de neurones

Keywords : railway, finite element model, CLM model, neural networks

1 Introduction

Dynamic simulation has become essential in the railway sector, whether for studying the dyna-

mic and vibratory behaviour of vehicles or for designing anti-vibration solutions to be mounted

on the railway network [1, 2]. In the first case, the multibody approach makes it possible to

account for large displacements as well as the vehicle’s non-linear behaviour. The second case,

often associated with a finite element or discrete element approach, generally relies on a mo-

dal analysis of the problem, where the study is conducted by comparing transfer functions.

In all cases, these models, often referred to as digital twins, provide a credible alternative to

experimental approaches [3].

In recent years, these models have been refined to adopt a more global approach : the track

is now often integrated into vehicle dynamic simulations, allowing for the consideration of the

wheel/rail interaction and the resulting dynamic coupling. Different coupling strategies can thus
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be employed, such as co-simulation between a multibody model and a finite element model [4],

or an approach in the frequency domain [5]. Ignoring coupling involves certain simplifying

assumptions, thereby limiting the applicability of the model. Additionally, ground effects must

also be considered, as they have a significant influence up to frequencies of 100 Hz [6].

Unfortunately, the inclusion of the track complicates modeling. While the frequency domain

benefits from mathematical tools that facilitate this coupling, the time-domain approach (nu-

merical integration of the equations of motion) is hindered by relatively long computation

times, beyond the coupling itself. In this regard, vehicle/track/ground co-simulation studies

provide a good illustration of this issue (e.g., [7, 8]).

The study of track/soil coupling and the associated degree of dynamic interaction is not new.

The analytical work of Sarfield et al. [9] and Rücker [10] initially focused on the potential

interaction between sleepers and the ground of a railway track in the absence of intermediate

elements such as ballast. Later, Knothe and Wu [6] demonstrated that track receptances are

better predicted at low frequencies when the soil is modeled as a half-space rather than using

the Winkler foundation, the latter being represented by spring elements distributed along the

rail, which is itself modeled as a continuously supported beam in bending. To fully capture this

coupling effect, two mechanisms must be considered (Figure 1) :

1. the transfer of vibrations between sleepers through the rail (top coupling, generally

included in track models) and

2. the transfer of vibrations through the soil (bottom coupling).

In the Winkler formulation, the flexibility of the soil beneath the sleepers (direct coupling) is

accounted for, but not the bottom coupling (indirect coupling).

Figure 1 – Two modes of vibration transfer between sleepers [11]

To avoid complex and computationally expensive models, this paper proposes focusing on

discrete models, such as those used in various predictive approaches for vibrations induced by

railway traffic, and leveraging machine learning techniques to optimize the parameter definition

process. An existing model, called the CLM model [11,12], is used with a new approach to cha-

racterize the parameters that define it, relying on machine learning to adjust these parameters

based on the dynamic characteristics commonly used in geotechnics.
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2 Railway modelling

It is commonly accepted that the multibody system approach is the preferred tool for studying

the vibrational behaviour of a railway vehicle, taking into account large motions (inducing non-

linear behaviours), complex suspension models, or even loss of contact between solids (such as

the wheel–rail contact). All of this is, of course, possible through numerical integration in the

time domain of the dynamic motion equations obtained by the method. Track models are less

numerous, focusing on a specific element (e.g., rail deflection/deformation, ballast characte-

rization). Early track modelling approaches, based on the assumption that the rail could be

represented as a single beam (typically of the Euler–Bernoulli type) resting on a Winkler foun-

dation, were abandoned in favour of multilayer models, with each layer characterizing a specific

track component (rail pad, sleeper, ballast, . . .). Single-layer methods were useful for studying

the very low-frequency characteristics of the track. Two-layer models were also proposed and

were considered an improvement over single-layer models, as they allowed for the simulation of

rail pads, sleepers, and ballast. It should also be noted that track support conditions (subgrade)

have a significant effect on track stiffness and therefore influence its dynamic response. In the

previously mentioned models, the track base was assumed to be rigid. While this assumption

may be suitable for tracks where the subgrade has a stiffness comparable to that of the track,

discrepancies arise when the supporting material is softer [13]. Consequently, research has also

been conducted to model the subgrade as an elastic half–space. Beyond the chosen model, the

difficulty lies in estimating the values of the track parameters, for which the physical meaning

is not always clear (e.g., modelling a material with a behaviour as complex as ballast using a

simple spring-damper system).

The model proposed here is a two–layer 2D model [14,15], considering only the inertial effects of

the track and sleepers, as illustrated in Figure 2. The flexible rail is characterized by its Young’s

modulus Er, geometric moment of inertia Ir, cross-sectional area Ar, and mass density ρr. The

viscoelastic properties of the rail pads and ballast are modelled using springs and dampers,

with stiffness and damping parameters (kp and dp for the rail pads, kb and db for the ballast).

The subgrade model is also a discrete model, described later, by first analysing the dynamic

behaviour of the subgrade as a foundation [16].
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Figure 2 – The flexible 2D track, considering a condensed soil (represented by the CLM
model)
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3 From a finite element to a discrete model

3.1 The Lysmer analogue model

The dynamic response of a vertically loaded massive foundation (aka subgrade) can be mo-

delled using a single-degree-of-freedom mass–spring–dashpot oscillator, where the stiffness and

damping coefficients vary with frequency. Lysmer advanced this approach by proposing the use

of frequency-independent parameters, simplifying the representation of the system (Figure 3).

xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

f(t)
mf

x(t)dfkf

Figure 3 – Lysmer analogue modelling of foundation

This approximation gained immediate success, Lysmer’s so-called “analogue” model can repli-

cates the soil impedance as functions of the circular frequency ω :

P (ω) = kf − ω2mf + jωdf (1)

Here, the real part of the impedance varies with frequency, consistent with observed physi-

cal behaviour. It is important to note that the parameter mf is not directly related to the

actual foundation mass since a massless foundation can be assumed. Figure 4 illustrates the

comparison of the real parts (parabolic-shaped curve) and imaginary parts (linear evolution)

of the impedance between this discrete approach and a finite element modelling after fitting

the frequency-independent parameters kf , df and mf . The results confirm that the Lysmer

analogue model accurately replicates the actual response. However, this approach remains sim-

plistic when considering multiple interconnected foundations.
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Figure 4 – Exemple of fitting vertical impedance with numerical model
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3.2 CLM model

The proposed model, depicted schematically in Figure 5, overcomes the limitation mentioned

above and is composed of discrete masses, springs, and dampers. The CLM model for the foun-

dation (i.e., the sleeper-through-the-ballast contact area) extends Lysmer analogue foundation

by incorporating additional coupling elements. Alongside the foundation’s mass (mf ), stiffness

(kf ), and damping (df ), extra spring–dashpot systems with stiffness (kc) and damping (dc)

are included to simulate the interaction between sleeper-foundation contact areas (adjacent

foundations). Simplified transmissibility expressions have been derived to determine these five

parameters for different soil conditions, whether homogeneous or layered. Notably, the dam-

ping parameter dc may assume negative values to account for the propagation delay of ground

waves [12].
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Figure 5 – The CLM model : a multi-foundation model for soil–foundation and foundation–
to–foundation interaction [12]

When a force is applied to the i-th mass, the overall impedances P1 and P2 corresponding to

each vertical displacement xj are given by [12] :

P1(ω) =
F (ω)

n
∑

j=−n

Xj(ω)

= kf − ω2mf + jωdf (2)

P2(ω) =
F (ω)

n
∑

j=−n

(−1)jXj(ω)

= (kf + 4kc) − ω2mf + jω(df + 4dc) (3)

where F (ω) and Xj(ω) represent the Fourier transforms of the applied force f(t) and displa-

cements xj(t), respectively. These equations provide distinct close relationships for calibrating

the CLM model parameters. The values of these parameters can be efficiently determined using

a finite element model of the soil by applying a known force at a specific mass and recording

the vertical displacement spectrum at n points, ensuring sufficient spatial coverage to capture

the full ground wave propagation.

3.3 Calibrating using a soil finite element model

For each considered soil type, a finite element numerical simulation is conducted, for example,

using ABAQUS (Figure 6). To mitigate spurious wave reflections, specific boundary conditions

are applied through infinite elements. The dynamic simulation provides vertical displacement

data at n points on the soil surface when a vertical force f(t) is applied at the surface. These

displacement histories are then combined with Eqs. (2) and (3) to manually calibrate the CLM

model parameters corresponding to the given soil type.
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Figure 6 – The finite element model for the soil, used to calibrate the CLM model

This calibration process is labour–intensive, as it necessitates running a separate numerical

simulation for each specific soil configuration. These simulations are computationally expensive,

often requiring several hours due to the large number of finite elements involved. Additionally,

the calibration involves manual adjustments, where the parameters P1 and P2 are iteratively

refined to minimize local discrepancies in the real and imaginary spectra between the CLM

model and the ABAQUS simulation.

3.4 On the use of neural networks

Artificial neural networks are widely used machine learning techniques that provide new insights

into fitting operations compared to traditional methods such as numerical optimization or

statistical approaches [17]. Training a neural network to approximate the relationship between

inputs and outputs is particularly effective for complex and/or non-linear problems. For this

study, the structure of the artificial neural networks designed to estimate the parameters of the

CLM model is defined as follows :

— Number of Networks : Five independent neural networks are implemented, each dedi-

cated to predicting one specific CLM model parameter (mf , kf , df , kc, or dc).

— Input Layer : Each network receives normalized soil characteristics as input, including

Young’s modulus (E), density (ρ), Poisson’s ratio (ν), and the viscous damping coeffi-

cient (β). These inputs are typically represented by four neurons. To enhance network

convergence during training, the inputs to the neural networks are normalized within the

range of 0 to 1. Although this normalization is not strictly required, it helps maintain

synaptic weight values within a consistent order of magnitude. The input values for the

neural networks are obtained by normalizing the soil characteristics using a predefined

standard value : Enom = 400 MPa, ρnom = 2600 kg/m3, νnom = 0.45, βnom = 0.0013 s.

— Output Layer : Each network has a single output neuron that provides the corresponding

normalized CLM model parameter (mf , kf , df , kc, or dc). The expected maximum

values retained for the CLM model parameters are : kf = 120 MN/m, df = 350 kNs/m,

mf = 260 kg, kc = 60 MN/m, dc = −50 kNs/m. It is important to note that the cross-

damping coefficient dc remains negative to take into account for the effects of wave delay

and material damping.

— Hidden Layers : The architecture of hidden layers varies based on the complexity re-
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quired. Each network generally consists of a single hidden layer containing between 10

and 20 neurons, utilizing activation functions such as the sigmoid function. The matrix

representation of this function is

sigm





















...

· · · aij · · ·

...





















=











...

· · ·
1

1+e−aij
· · ·

...











. (4)

— Training : The networks are trained using back propagation with an appropriate opti-

mizer and a loss function, such as mean squared error, to minimize prediction errors.

Training data is generated from numerical simulation results, ensuring sufficient varia-

bility in soil properties for better generalization.

Input 1

Input 2

Input 3

Input 4

N1.L1

N2.L1

...

Nz.L1

Output 1

Figure 7 – Structure of the five artificial neural networks to calculate the parameters of the
CLM model

Once the neural networks have been trained, they can be used to predict the CLM model

parameters for a given soil. This is achieved using the following matrix relations :

mf = 260 sigm
(

sigm
([

E
400

ρ
2600

ν
0.45

β
0.0013

]

.W1mf

)

.W2mf

)

, (5)

kf = 120 sigm
(

sigm
([

E
400

ρ
2600

ν
0.45

β
0.0013

]

.W1kf

)

.W2kf

)

, (6)

df = 350 sigm
(

sigm
([

E
400

ρ
2600

ν
0.45

β
0.0013

]

.W1df

)

.W2df

)

, (7)

kc = 60 sigm
(

sigm
([

E
400

ρ
2600

ν
0.45

β
0.0013

]

.W1kc

)

.W2kc

)

, (8)

dc = −50 sigm
(

sigm
([

E
400

ρ
2600

ν
0.45

β
0.0013

]

.W1dc

)

.W2dc

)

. (9)

Input and output data are normalized to facilitate training and improve convergence. After

training, the output values are denormalized to obtain the actual CLM model parameters.The

weight matrices W1 and W2, obtained after complete training and validation, are presented

in Figure 8.
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Figure 8 – Weight matrices of the trained neural networks
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3.5 Sensitivity analysis

At this stage, a sensitivity analysis can be conducted to visualize the influence of the soil input

parameters on the parameters of the CLM model. Without going into a detailed analysis, Fi-

gure 9 illustrates the sensitivity of each parameter and highlights their influence on the model’s

elastic properties (ki vs. E and ν), dissipative properties (di vs. E and β), and inertial proper-

ties (mf vs. E and ρ). It turns out that Poisson’s ratio has little influence on all parameters

and that only the foundation mass is weakly dependent on Young’s modulus.
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Figure 9 – An overall sensitivity analysis of the soil parameters on the CLM model parameters
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4 Results

Table 1 presents a sample of the soil parameters values, comparing them with manually obtained

data. This comparison demonstrates the effectiveness of the implemented neural network, with

an accuracy that is entirely acceptable. The results correspond to a homogeneous soil charac-

terized by the following properties : Young’s modulus E = 160 MPa, density ρ = 1600 kg/m3,

Poisson’s ratio ν = 0.30 and viscous damping coefficient β = 0.0004 s.

Table 1 – Example of Comparative Results on the CLM Model
mf kf df kc dc

[kg] [MN/m] [kNs/m] [MN/m] [kNs/m]

Parameters manually calibrated 146.78 36.24 73.56 12.43 −8.25
Parameters obtained using Eqs. (6)–(9) 150.54 38.35 77.77 13.91 −8.62

To demonstrate the beneficial effect of accounting for soil flexibility, a coupled vehicle/track

simulation is conducted. In this case, a half-bogie model is employed, treating the wheelset,

bogie frame, and car body as rigid bodies with masses mc = 13.4 t, mb = 1.6 t and mw = 2 t

respectively as shown in Figure 10). The primary and secondary suspensions are modelled using

linear springs ki and dampers di (i = 1 or 2), with values k1 = 0.61 MN/m, k2 = 1.05 MN/m,

d1 = 20 kNs/m and d2 = 5 kNs/m. The wheel-rail interaction is governed by the force Frail/wheel,

following Hertz’s contact law. The track configuration corresponds to the high-speed line in

Mévergnies, Belgium [18].

mc

mw

mb

k1

k2

d1

d2

rail

Frail/wheel

v0

Figure 10 – Single–axle load vehicle model

The results obtained from the vehicle/track/foundation model, incorporating the CLM model

for the foundation, are compared with those derived from a simplified Lysmer analogue model,

considering two cases : stiff soil kb/kf = 0.3 and soft soil kb/kf = 1.6 (Figures 11 and 12).

Differences can be observed between the two ways of considering the soil, but they are signifi-

cant enough to highlight the coupling effect between sleepers through the soil. This difference

becomes even more pronounced as the soil becomes more flexible relative to the track.
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Figure 11 – Time history of the vertical rail deflection during the passing of a single–axle
load vehicle at speed v0 = 300 km/h

(a) Vehicle/track model without
foundation

(b) Vehicle/track/foundation model
(stiff soil)

(c) Vehicle/track/foundation model (soft
soil)

Figure 12 – Visualisation of the track/foundation model during the passage of a single-axle
load vehicle at a speed of v0 = 300 km/h (deformation scale factor : 500 for the rail, 1000 for
the subgrade)

5 Conclusion

To simplify vehicle/track/soil simulations and avoid the complexity of a compound model, a

discrete and lightweight soil representation, known as the CLM model, has been developed. This

model incorporates coupling through the track contact area and is based on Lysmer analogue

foundation. Interaction between foundations is captured using coupling spring and damper

elements. To calibrate the dynamic parameters of the model, concise expressions for overall

impedances have been formulated to match the discrete model parameters. These expressions

facilitate efficient comparisons between discrete and numerical models. A fitting process, sup-
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ported by a neural network, is introduced using these simplified analytical relations, similar to

those in Lysmer’s analogue model. The CLM model exhibits strong agreement with numerical

results from finite/infinite element soil modeling across different scenarios, including homoge-

neous soil and layered media. Ultimately, closed-form solutions are derived, offering a fast and

practical method for estimating CLM model parameters for typical soil configurations.
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